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Abstract The flexible space manipulator is a highly
nonlinear and coupled dynamic system. This paper
proposes a novel composite sliding mode control to deal
with the vibration suppression and trajectory tracking of
a free-floating space rigid-flexible coupling manipulator
with a rigid payload. First, the dynamic equations of this
system are established by using Lagrange and assumed
mode methods and in the meantime this dynamic
modelling allows consideration of the modelling errors,
the external disturbance and the vibration damping of a
flexible link. Then, in modal space, the problems of the
manipulator system’s trajectory tracking and the
vibration suppression are discussed by using the
composite control approach, which combines a non-
singular terminal sliding mode control (NTSMC) with an
active vibration suppression control (AVSC). The NTSMC
uses a fuzzy logic outputinstead of the symbol item,
which smoothes the control signal, thereby inhibiting the
chattering of the sliding mode control. Compared with
common sliding mode control (SMC), the approach not
only can reduce the chattering of the sliding mode
control, but also can eliminate the singular phenomenon
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trajectory tracking and the vibration suppression. Many
space missions can benefit from this modelling system,
such as autonomous docking of satellites, rescuing and
satellite servicing. Finally, the numerical simulations
were carried out, which confirmed the effectiveness of
these methods.

Keywords Space Rigid-flexible Coupling Manipulator,
Non-Singular Terminal Sliding Mode Control, Active
Vibration Control, Trajectory Tracking

1. Introduction

With the rapid development of space technology, there
has been great interest in the design and control of space
manipulators with flexible links and bases. These have a
number of advantages: light weight, small driving force
and low energy consumption etc. However, the structural
flexibility ~inevitably causes elastic deflection and
vibration. So the problem for flexible
manipulators is much more complex than the equivalent
one for rigid manipulators. A flexible manipulator
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controller not only must achieve the same motion
objectives as a rigid manipulator, but also must stabilize
the vibration that is naturally excited. Furthermore, a
primary problem concerns the motion coordination
between the spacecraft and the manipulator. In fact, due
to the lack of a stationary base, the free-floating spacecraft
will react to the motions of the attached manipulator. If
the inertia of the manipulator, with respect to that of the
spacecraft, is non-negligible, the application of
conventional control techniques for a ground-fixed
manipulator becomes unfeasible and different strategies
have to be pursued. A flexible space manipulator is a
highly nonlinear and coupled dynamic system. Many
techniques in dynamic modelling of space robots have
been developed [1, 2, 3]. The assumed mode method to
describe the elastic deformation has been used in [4] and
the dynamic model of a flexible dual-arm space robot is
built by the Lagrange approach. The problem of the
dynamics and control of a flexible space robot capturing a
static target was presented in [5]. The dynamic model of
the robot system is derived with Lagrangian formulation.
In [6] the problem of the generalized contact forces
between the space robot end-effecter and the target
satellite as internal holonomic and nonholonomic
constrains
researchers have concentrated on developing control
strategies for design and implementation in various
applications of flexible manipulators. In several pieces of
work [7, 8, 9] neural network based control schemes have
been proposed to obtain controllers with adaptation
capabilities for the uncertainties for space manipulators.
Classical adaptive control schemes have been proposed
[10, 11] and other control schemes, like robust control [12,
13, 14] and namely intelligent control [15], can be found.

Variable structure control with a sliding mode is a
powerful robust nonlinear control technique that has
been intensively developed during the last 35 years [16,
17]. The term “variable structure system” (VSS) first
made its appearance in the late 1950s. Since that time, the
first expectations of such systems have naturally been re-
evaluated and their real potential has been revealed.
Novel research directions have originated due to the
appearance of novel classes of control problems, novel
mathematical methods and novel control principles. The
sliding mode design approach usually consists of two
steps [18, 19]. First, the switching surface is designed such
that the system motion in sliding mode satisfies design
specifications. Second, a control function is designed
making the switching surface attractive to the system
state. In some work [20, 21], the non-singular terminal
sliding mode controllers have been proposed for flexible
and rigid manipulators, respectively. A novel design
approach of a multiple input multiple output adaptive
fuzzy terminal sliding-mode controller for robotic
manipulators is described in [22], which does not require
detailed system parameters_for the presented controller.

has been considered. Nowadays, many
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In [23] a robust control approach is developed to control a
robot in the task space using a sliding mode by support of
feedback linearization control and a back-stepping
method. [24] proposed a PID integral variable structure
regulation controller for robot manipulators.

In this paper a novel composite sliding mode control
approach for a free-floating space rigid-flexible coupling
manipulator with a rigid payload are proposed. The
dynamic model of the manipulator is established by
considering the modelling errors, the external disturbance
and the vibration damping of a flexible link, based on
Lagrange and assumed mode methods, as well as
conservation of momentum theorem. The composite
control approach combines NTSMC with AVSC for
trajectory tracking and vibration suppression. The general
sliding mode control inevitably causes chattering and
may cause a singular phenomenon. Compared with the
SMC, the novel NTSMC with the fuzzy logic inference
can inhibit the chattering of the sliding mode control, at
the same time the singular phenomenon can be
eliminated for the system’s control input. Finally,
numerical simulations are performed to demonstrate the
effectiveness of the proposed methods.

2. Dynamic model description for the manipulator system

In this section we introduce the dynamic model of a free-
floating space rigid-flexible coupling manipulator with
three links. It includes a base, three links and a rigid
payload. Among them, L, and L, are rigid links and L, is
a flexible link. Let X, =[x, y, HC]T be the pose of the
payload, X :[xb Y Hb]T be the pose of the base, 6.is
the attitude angle of the base and ¢, is the attitude angle

of the base. The coordinate systems in Fig.1 are defined as

follows:
Rigid Payload
¥
xr
o X
Inertial System Base

Figure 1. An articulated three-link rigid-flexible coupling space
manipulator; X-OXY —The inertial coordinate system. Xo-
OuXoY»—The base coordinate system. Xi-OiXiYi—The fixed in the
ithlink coordinate system. Xc-OcXcYc—The payload coordinate
system fixed to the centre of mass of the payload.

The link coordinate system is established in accordance
with Denavit-Hartenberg rules. The elastic deformation
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mode is described as @(x;,t) by the assumed mode
method:

o(x5,t) = ZSin(iﬂx3 / Ly)7;(t) (1)

i=1

wherenis the mode’s order(n=2),7,(t)is the flexible
link’s generalized deformation variable and x;is the X,

direction coordinate in the coordinate system of the
flexible link.

The total momentum of the system is given by:

3
T=T,+> T+T, 2)
i=1

where T, = %Ihébz + %mbjcbz + lmbybz is the kinetic energy

of the base, T,= ;I 92 +—= j TR dx; is the kinetic
- 1 ., 1
energy of the i link, T = EI CHC +— 5 e x5 += Sy is the

kinetic energy of the payload, where p; is the linear density
of the i link and x; is the distance from any point of the it
link to the i* link coordinate’s origin. R; represents the
speed of any point on the it link. 1, is the mass of the base.
m, is the mass of the payload. I is the inertia moment

of the base. I is the inertia moment of the payload.

Moreover, the total potential energy of the system is
given by:

U=U,+U,+U, 3)

where U,(i=1,2) is the potential energy of the rigid links
Li(i=1,2). As the system is in micro-gravity space, the
gravitational potential energy can be ignored. The
potential energy of the system is only generated by the
elastic ~ deformation of the flexible-link. = Then
u,=0,U,=0.

The flexible link’s potential energy can be written as:

o2 a)(x3,t)

j EI(——=3")dx, (4)

where EI is the module of elasticity.

According to Eq. (2) and Eq. (3), the Lagrange function is
given by:

L=T-U ®)

Based on the prmc1p1e of D’Alembert-Lagrange, the

ol Lar N zyl_llsl

d SL
AL 0L i
atlsg ) 5g =7 (=12
d SL. 6L .
S -===7.-J'F (i=3 6
o) 5 =T (=9) ©)
Aoty Ot g (i=12)
dt on;”  on;

where 7; is the joint torque, e R>?is the manipulator’s
Jacobian matrix and F e R¥>1is the force vector exerted
by the end-effector on the payload at the grasp point.

According to Eq. (6), the dynamic equations of the system
are given by:

My X, +Mppd+ M0+ Dy X, + D0+ D;yQ=7-]'F (7)
My, X, + Mypf + MpsQ + Dy X, + D)0+ KQ=0  (8)

where Mij(i =1,2,j=1,2,3) are the generalized mass
matrices, Dij (1=1,2,j=1,2,3) are the damp matrices, K
is the stiffness matrix of the flexible links and
Q= |:771 r]z]T—[Ql Q, ]TTis the generalized deformation
variable. 0—[0 o, 0 ] is the joint angle vector of the
links and 7= [1'1 T, T3 ]T is the joint torque vector.

According to the Newton-Euler formula, dynamic
equations of the payload are given by:

mg. = f, ®)

1.0.+6,x(1.8) =N, (10)

where m_is the mass of the payload, I. is the inertia
moment of the payload, f, is the resultant force between
the end-effector and the payload and N, is the resultant
moment between the end-effector and payload. 7.is
the position vector of the payload centre with respect to

the inertial coordinate system.

According to Eq. (9) and Eq. (10) , the dynamic equation
of the payload can be written as:

D(X,)X.+C(X.,X,)=GF =F, 11)

m.E, 0
where D(XC):{ 62 ; :|€R3X3 ,E, eR¥?is the unit
c

matrix ~ and C(X,,X.)=[00(0.x1.0) T ,
1 0 0
G=| 0 1 0|eR¥* isthe grasping matrix. Px, Py are

-Py Px 1

the components of the position vectors with respect to the
payload coordinate system. F =] foT ,NOT]T eR¥!. The
end-effector force F =G'F that satisfies Eq. (12) can be
decomposed into two orthogonal components [25], one
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contributes to the motion of the payload and the other
produces the grasping force F, R*>1 between the end-
effector and the payload. G* =GT(GGT)_l eR¥3 s the
pseudo-inverse matrix of G .

The end-effector force F can be expressed as:
F=G"(D(X)X, +C(X., X)) +F, (12)

The relationship between X_, X, and 0 is given by:
Xc = ]cbXb + ]cqé (13)

where ], is the Jacobian matrix for the payload with
respect to the base and ]Cq is the Jacobian matrix for the
payload with respect to the joint.

We assume the space manipulator system is operated in
free-floating mode, so that linear and angular momenta
are conserved. On the assumption that total linear and
angular momenta are zero, so we can obtain:

H X, +H,Q+H,X, +HQ+HQ=7-]'F (14)

Q=-N, (N;X_ +N;X_ +N,Q+N:Q) (15)
" . . ;
AX +BX +CQ+DQ+E =7-]'F, (16)

where H; (i=1---5), N, (i=1---5), A.,B,,C.,D.,E. are
the coefficient matrices, respectively. Eq. (16) is the
dynamic equation of the system.

In the actual modelling process there are measurement
errors of model parameters and the joint friction, as well
as other factors of uncertainty, which lead to a systematic
modelling error. The system in practice will be subjected
to a variety of external disturbances, so Eq. (14) and Eq.
(15) can be rewritten as:

H X, +H,Q+H,X, +HQ+HQ+d, +dy=c~]'F (17)

Q=-N,"(N,X. +N3X_+N,Q+N:Q+d;)  (18)

whered, is the model error for the system, d,is the
external disturbance and d,is the vibration damping of
the flexible link.

According to Eq. (17) and Eq. (18), the dynamic equation
(16) can be modified to:

AKX +BX +CQ+DQ+E =7-]'F, (19

where A, = H, - H,N,'N, + ]'G*D(X,),
B =H; - H2N2‘1N3, Cr=Hy- H2N2_1N4 ’

3. Sliding mode control for the manipulator system

In this section the controller for robotic manipulators
combines the advantages of the non-singular terminal
sliding mode control and the fuzzy inference mechanism.

Eq. (19) can be written as the following state equation:

{i‘l =X, 20)

Xy =fi+uy

where x; =X, x, :XC ,
f=-ABX +CQ+DQ+E), u =A-]'F,).

It is assumed that f; = fl +Af, where fl is an estimated
value of f;, Af is the model uncertainty with modelling
error and the external disturbance and |Af|£a, ais a
positive constant defined as the upper boundary of Af .
Let’s define the tracking error:

e=x-x,=X, X! (1)
where x;, = Xf is the desired payload’s position.
3.1 SMC law

To obtain the finite time convergence of the system
tracking error, the sliding surface is defined as:

s=é+Kpe (2)

where K| =diag(4,,4,,4;), in which 4(i=1,2,3)is a
positive constant.

The SMC(22) derivative along the state Eq. (20) of the
system dynamics is:

. 5 od .
s=X_-X.+Kpe
= f+u; - X?+Kpé (23)
The controller can then be expressed as:

u, =—f, + X~ Ké - K, -sgn(s) (24)

where sgn(s) is the sign function of s, i.e., sgn(s)=1 if
s>0; sgn(s)=0 if s=0; sgn(s)=-1if s<0. The switching
gain K, is a positive constant and K, > « .

Substituting Eq. (22) into Eq. (23) yields:
§=Af - K, -sgn(s) (25)

Obviously, ss<0 Under the action of the controller u,
the sliding mode is subsistent and accessible.

3.2 NTSMC law

To obtain the finite time convergence of the system
tracking error, the sliding surface is defined as:
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s=e+ K1 e+ F(é) (26)
where K, =diag(4,,4,,4;), in which A4(i=1,2,3) is a
positive constant, p,gare odd numbers andg<p<2qg.

p/ splq splq .plgqT ; ~1.p/
et =[el"1,ebM BT, F(e) = K e

The NTSMC(26) derivative along the state Eq. (20) of the
system dynamics is:

s=e+ LK1 27)
q
So, the controller can be expressed as:

u = —fl + Xcd —SKeéz*q/’7 - K, -sgn(s)

=—f;+ X!~ Fy (&)~ K, -sgn(s) (28)

where K_ is a K.>a,

switching gain and <

Fe) =LK e,
q

Remark: whené#0,e=0,u; >, namely a singular
phenomenon has occurred.

Theorem 1:For the input-output system, if the sliding
surface of the non-singular terminal sliding mode is
selected as Eq. (26) and the controller is designed as Eq.
(28), then the system’s state errors will converge to zero
in a finite time.

Proof: The Lyapunov function is chosen as:

V==sls (29)

The derivative of the Lyapunov function, with respect to
time, is obtained as:

V=53
=(e+F )" @(Af - K sgn(e+ F(é)))
<(e+F(e)’ ié)(a - K, sgn(e+F(¢)))

é
where K is a switching gainand K, > « .

Thus V <0 for all t and the system is stable and the
system’s state errors will converge to zero in a finite
time.

The NTSMC not only can guarantee the system states
reach a terminal sliding surface in a finite time, but
also can eliminate the singular phenomenon for the
system.

Ol Ll fyl_ﬂbl

3.3 Jitter suppression and force control
of the manipulator system

Whens =0, switching will bring about jitter. For jitter
suppression, a saturation function saf(s/ ) can be used,
instead of the sign function sgn(s) .

{ X, |x| <1
sat(x) =
sgn(x), |x| >1

boundary layer.

, ois the thickness of the

In this section, fuzzy inference rules are used to adjust the
fuzzy quantization factor of the switching function. On
the one hand it can guarantee the stability of the entire
system, on the other hand it ensures that the system has
good transient performance. We set:

K, -Au=-K, -sat(s) (30)

Au<0, s>0
Au>0, s<0-

theory to determine Au, let it substitute the switch function
for sat(s) , in order to make the control signal smooth.

According to Eq. (30), { Through fuzzy set

First, we select positive constantfand normalize s,
assuming§ =fs,and define § as the input variable of the
fuzzy system and Au as the output variable of the fuzzy
system.

Second, both § and Au are partitioned into seven fuzzy
subsets: negative big (NB), negative middle(NM) ,
negative small(NS), zero (ZE), positive small(PS), positive
middle(PM) and positive big (PB). The triangular shape
membership function of § is shown in Fig. 2. The
singleton membership function of Au is shown in Fig. 3.

0.8

£(5)

08
A R A A

02 /o / \ / / \ .

.. NB NM NS 7O PS PM PB
0.8
é 06
1
04-
02-
L R 1 23 4

0
Au

Figure 3. Output membership function
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According to Fig. 2 and Fig. 3, the fuzzy rules can be
determined as follows:

IF §is NB, THEN Au is PB;
IF §is NM, THEN Au is PM;
IF §is NS, THEN Au is PS;
IF §is ZO, THEN Au is ZO;
IF §is PS, THEN Au is NS;
IF §is PM, THEN Auis NM;
IF §is PB, THEN Au is NB.

Choosing the weighted average defuzzification, the
output of the fuzzy inference system can be written as’

3
> w(3)(-i)
K,-Au=K, %
Z £4:(3)

i=-3

(G2))

where (5)is the strength of the i rule and (-i)is the
associated single membership function of Au.

According tou; = A,;l(r— ]TFg) , we define the controller
as 7:

7= Ay + 7, (32)
where 7y is defined as:
v =T (F =K [epdt) (33)

where e = Fg —r , F; is the desired value of Fg and the
gain matrix K; is chosen as the diagonal and positive
elements.

4. AVSC for the manipulator system

In the modal space, a modal control force F,, is used to

suppress the vibration of the flexible link.

According to Eq. (18), the vibration equation becomes:
Q+CQ+KQ=f, (34)

where C=N 2_1N 4is the generalized damping matrix,

K=N 271N 5 is the generalized stiffness matrix and

fy=-N,"(N, X, +N,X_+d;) is the modal excitation
force.

The modal control force F, =[F, sz]T is introduced to
the system, so Eq. (32) becomes:

Q+CQ+KQ=f,+F, (35)

Setting x = [Q QJT, u, = f, + F, . Eq. (35) becomes:

= Ax+Bu, (36)

0 I 0
where A = 2x2 2x2 , B= 2x2 .
-K -C Iy

A quadratic performance index J"is defined as:
« 1o
J =5l GOWHO (0 Ruptat - (37)

where W is a positive-definite matrix and R is a positive
matrix. The control objective is to design the optimal
control law u, that minimizes the performance index | B

Then, the optimal control input u,(t) can be derived as:
1y (t) = —R'BPx(t) (38)

where matrix P is the unique positive symmetric
solution to the Riccati equation and denotes:

~PA-ATP+PBR'BTP-W =0 (39)
According to Eq. (35), the modal control force F,, is given
by:

F,=u,~-f, (40)

where f,is the estimate of f,. It is assumed that
for= Nz_l(NlXC +N;3X.), Nl,Nz,N3 are the estimates of
N;,N,,N; . Eq. (40) becomes:

Pm =_RilBEx(t)_N2il(N1Xc +N3Xc) (41)

The proposed method, which combines NTSMC with the
modal force control, can guarantee the trajectory tracking
and the vibration suppression.

According to Eq. (17), Eq. (18) and Eq. (35), the dynamic
Eq. (19) can be written as:

AKX +BX +CQ+DQ+E +HyF, =7-7, (42)

Let’s define the composite controller as 7 :
7= A+ To+ H,F, (43)
The architecture of the composite control for the free-

floating space rigid-flexible coupling manipulator system
is shown in Fig. 4.
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Figure 4. The architecture of the composite control for the free-floating space rigid-flexible coupling manipulator system

5. Simulation results

In this section, to illustrate the effectiveness of the
proposed strategy, the numerical simulations have been
performed via Matlab with SIMULINK. The parameters
of the system are given in Table 1.

Inertia Module of
Linki  Mass(kg) Length(m)  moment elasticity
(kgm?)  (N-m?)
The base 2000 1.5(radius) 100 null
Link 1 2 2 1.2 null
Link 2 2 2 1.2 null
Link 3 2 2 0.2 200
p;;:a J 20 0.5(radius) 15 null

Table 1. The parameters of the free-floating space rigid-flexible
coupling manipulator system
set to

The original pose of the base is

X, —[1 5m Om Orad] The desired graspmg force/
moment is chosen as F —[10N ON,ON - m] . The model
di1,d2,d3

errors and dlsturbances are assumed as

d1=0. 1sgn(6') ,

d2=[0.01cos(5t) 0.01cos(5¢) 0.01 cos(5t)] and
ds=0. Olsgn(Q)

Let f,=08f,p=5, q=3,K =5, K, =2E,, K,=5E,,
K;=6E,, K =10E;, W =6E, and R=1.5E,, where

E,e R3S, E e R¥* and E, e R?>? are the unit matrices.

The desired trajectories for the payload are given by:

()

2.5+0.1cos(2t)(m)
=|yi(t) [=| 4+0.1sin(2t)(m)
gcd(t) 0.1cos(2t)(rad)

For the purpose of comparison, the simulations have been
carried out by considering SMC and NTSMC for the
control of the manipulator system in this work. The first
is the classical SMC that shows the simulation results in
Fig. 5-7. Fig. 8-10 show the simulation results under the
controller NTSMC. Fig. 5 and 8 show the position curves
of the base, with SMC and NTSMC, respectively. Fig. 6
and 9 denote the position tracking curves of the payload
with SMC and NTSMC, respectively. Fig. 7 and 10 show
the position tracking error curves of the payload with
SMC and NTSMC, respectively. The simulation results
show that the speed of the tracking error’s convergence to
zero for the NTSMC is faster.

Fig.11 shows the change curve of the modal force. Fig. 12
shows the change curve of the generalized coordinates of
the flexible link. Fig. 13 shows the change curve of the
grasping force between the end-effector and the payload.
The above composite control scheme can track the
expected trajectory accurately, even though there is
uncertainty in the model parameters. The simulation
results clearly illustrate that the tracking effect of the
grasping force and the vibration suppression are very
good.

X 10_3

Ob (rad)

1.502

15
Xb(m)

Va(m) -4 1.499

Figure 5. The position curves of the base with SMC
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desired trajectory € 002F ]
***** actual trajectory &) o
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S o -0.05 '
0 2 4 6 8 10
-0.2 =
45 8§ oo2f
3 = 0
4 @ -0.02}
2 @ 0 2 4 6 8 10
35 2
Ye(m) Xe(m) Time(s)
Figure 6. The position tracking curves of the payload with SMC Figure 10. The position tracking error curves of the payload with
NTSMC
E 002 ]
X -0.02 ‘ ‘ ‘ ‘ ]
@ z
0 2 4 6 8 10 <
= 05 ‘ £
>
T -05 ;
0 2 4 6 8 10
@ 0.02 =
& £
% -0.02 : : : : [
0 2 4 6 8 10 ;
Time(s) 0 2 4 6 8 10

Time(s)

Figure 7. The position tracking error curves of the payload with .
Figure 11. The change curves of the modal force

SMC
3 x10_3
x 10 5
4 £y
]
~ 2 5 ‘ ‘ ‘ ‘
B 0,5 2 4 6 8 10
= x 10
20 5 : : : :
> E ol
2 e
1.502
-3 0 1501 _5 L L L L
x 10 15 0 2 4 6 8 10
Yb(m) 2 1499 xp(m) Time(s)

Figure 12. Generalized coordinates of the flexible link
Figure 8. The position curves of the base with NTSMC

Z
desired trajectory ?é” 10 p
fffff actual trajector L 9.999 : : : :
0.2 ecloly o , 2 4 6 8 10
x 10
3 A P
Ne) = il
g0 e . ‘ ‘ ‘ ‘
s 0 2 4 6 8 10
Y
2x10
- 3
02 =4 o~
3 ‘ ‘ ‘ ‘
0 2 4 6 8 10

Time(s)
Figure 13. The change curves of the grasping force between end-

effector and the payload.
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6. Conclusions

The dynamic model is established by using an assumed
mode method combined with Lagrange and momentum
conservation theorem, while considering the modelling
errors, external disturbance and vibration damping of the
flexible link. Based on this model, SMC and NTSMC are
designed to ensure the trajectory tracking control of the
rigid payload, respectively. In the NTSMC controller, the
fuzzy output is used, instead of the symbolitem, to
smooth the control signal, thereby the chattering of
the sliding mode control has been inhibited. The NTSMC
not only can guarantee the system states reach the
terminal sliding surface faster, but also can eliminate the
singular phenomenon for the system’s control input. The
modal force control is presented to suppress the flexible
vibration, which is solved by using an infinite time linear
quadratic optimal control method. The computer
simulations have been performed to validate the
effectiveness of the proposed controller, which
demonstrate the proposed controller not only can assure
the trajectory tracking, but also can suppress the flexible
vibration and control the grasping force between the end-
effector and the payload.
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